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SUMMARY

The theory of cascades, made up of a series of flat plates placed
one behind the other, is extended to the case where the impinging stresm
is not uniform, and the deduced properties of this cascade-flow are then
applied to the study of the wall interference between such a cascade-
like boundary amd a vortex-source type of singularity. It is shown that
the induced velocities, produced by the presence of such a wall, are
equal to what is obtained by action of a suitably chosen “reflected”
singularity situated on one side of the wall, together with the action
of another suitably chosen “transmitted” singularity placed on the other
side.

The concepts of a reflection factor and a transmission factor are
introduced to characterize various types of tunnel bom”dary, whether.
this is composed of solid wall, open-and-closed sequences, or just a
free fluid surface. These ideas are then efiended to cover the situa-

. tion in which a pair of such walls are allowed
in the event that one of the walls consists of
and the other is a fluid surface._ This latter
of boundaries is called a perfora=d-wall.

Finally, the interference arising from am

to coalesce, especially
open-and-closed portions
particular combination

arbitrary general singu-
larity placed symmetrically in between two such perforated wal& is
analyzed, and these results are then applied to the determination of
the particular kinds of wall geometry that will produce no interference
effects in the case of a slender lifting wing and.also in the case of
a symmetric profile having a finite thickness.

*“Studio dell’Interferenza delle Gallerie Aerodinamiche con Pareti
a Fessure.’l Published in Atti dells Accademia delle Scienze di Torino,
vol. 87, 1952-1953.

*
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CHAPTER I
.-

.

1. Let attention be directed to a straight wall tie up of a series
of like-sized flat plates, each of chordlength L, and following one
right after another, with a distance between centers of D. (See
fig. 1.)

Let y be the perpendicular distance of any arbitrary general
point from the straight wall. Furthermore, take Y = y/D as the ratio
of the normal distance to the “pitch” (or interval between the succes-
sive repetitions of the gapped wall).

The behavior of such a cascade of plates at an infinite distance
above and below the wall (i.e., at the locations where Y = +w), that
is under action of an impinging stream, with a umiform undisturbed
velocity, denoted by the vector Tim, is described by means of the two
equations

?mm = Fim - ?Sm

1 (1.1)

where the velocity below the wall is denoted by the m subscript and the
velocity in the upper region by the v subscript. ?Of co~se} SCU

stands for the induced velocity, produced by action of the gapped wall,
in a direction parallel with the length of the wall. The magnitude of
this induced velocity is provided by cascade theory and has the value

where Vnm is the component

while q is related to the

vSco = qvnm (1.2)-.

of ?& which is normal to the plates,

L/D ratio thioiighthe rektionship

(1.3)

Provided it is understood that the q?~ vector is to be taken

as lyhg in the direction parallel with the horizontal extent of the
cascade-like wall, one may thus rewrite eqwtions (1.1) as

(1.4) .

-..
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The sole condition which it is necessary
the equations (1.4) should hold true is that

3

to stipulate in order that
Y= y/D must be infinitely

large. It may be observed that these equations also remain unaltered
provided that the L/D ratio stays constant. ~ view of these facts,
one may proceed to treat the case where y is merely of finite size,
however, by simply letting L and D tend toward zero in magnitude,
but b such a mannerthat the ratio between them is retained at a fixed
constant value. The assumption will henceforthbe explicitly adopted
that the pitch and the chordlength are, in fact, now both to be infini-
tesimally small, in comparison with any other of the distances that
might enter into the argument. In consequence of this assmption, there-
fore, it follows that equations (1.4) become converted into just

?m=?i- q?n

}
(1.5)

ifv = ?i + ayn

and the gapped wall should thus be looked upon as merely a plate which
is refracting the streamlines.

On this basis it may also be assumed that the relationships given
as equations (1.5) will not only hold true for a uniform stresm but that
they will, in addition, also.be valid for any velocity distribution
whatsoever, provided merely that the pitch and chordlength are taken
to remain infinitesimally small with respect to the radii.of curvature
of the streamlines existing in the flow just below and just above the
perforated wall.

2. Now let the flow field be referenced to a complex planar coordinate
system such that the (reals) x-axis coincides with the direction of the
straight wall, while the (imaginaries) iy-axis is in the direction lying
perpendicular to the wall; the origin is taken to be at any arbitrary
location. (See fig. 1.) The “outside” region of the flow is thus the
infinite half-plane for which y > 0, while the “inside” portion of the
flQw is the infinite half-pkane corresponding to the points for which
y<o. Then upon rewriting the vector operations given as equations (1.5)
as separate scaler equations, it is seen that

v= =v*- Niy and VW

1

=Vix+ qviy
(2.1)

%Y = v~y ‘w =v~y -

and from comparison of the forms of these relationships it follows that

‘W’VVY=VY (2.2)
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vu - Vm = 2qvy (2.3)” -
.

The behavior of the flow in passing through the cascade-like wall
is thus completely defined by means of equations (2.2) and (2.3).

The fact that the presence of the cascaded walldoes not change
the normal component of velocity at all is rather surprising. On the
othei hand, it is apparent that the tangential component of the flow
undergoes a sudden jump as the flow passes the grid pattern of the wall.
The magnitude of this jump in the tangential velocity component is pro-
portional to the normal component of the impinging stream. Now this
change in the tangential velocity-component, brought about by the gapped
wall, may be interpreted as though it were actually due to the action
of a distribution of vortices placed along the x-axis and having a
strength 7, whose magnitude is given by “ .--—

7 =Vm-vm= -2qvy (2.4)

For the sske of convenience, let a running coordinate along the
x.+uds be denoted by the symbol tj. Then the eq?ression for the com-
plex potential governing the distribution of velocities generated by
the presence of the gapped wall is readily seen to be

-

-1w=—
2?ci

It should be pointed
is valid only if the flow

I..
m

2qVy(~) log (z - E) dk (2.5) ‘_

out that everything that has been said so far
field is isoenergetic, and it.wilJ be taken

for granted in what follows that this is the situation under examina-
tion, so long as the case of the mixed%oundary condition (the perforated
tunnel) is not being treated.

In what follows, it will be very convenient to make-use of the
expression for the complex velocity, which may be witten.down at once _
as

-. .“..-

(2.6) ‘
=-. ..

All possible aerodynamic configurations which are met in practice
can be built up out of the fundamental situation wherein -thereexists
in the field of flow one single arbitrary general singularity of the

.

.

—.
.-

— --
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fOrm

.
A SQ+;r (2.7)

(i.e., a combination of a source of strength Q with a vortex of inten-
sity I’). In what follows it will be sufficient, therefore, to concen-
trate attention on the study of the flow field resulting from the pres-
ence of such a singularity, A, placed at the position denotedby -iYo

(see fig. 1) from the cascade-like wall, and 3mmersed ina stream flowing
parallel with the x-axis, the magnitude of whose velocity vector is taken
tobe Vm at infinity.

The
be (with

in which

complex velocity corresponding to such a flow field is seen to
the aidof eq. (2.6)):

it is plainly seen that

.

holds true..

(2.8)

(2.9)

3. Consequently, it is clear that equation (2.8) turns out to be just
an integral equation in the con@ex velocity. The solution of this equa-
tion will be attacked, however, by making use of an indirect route,
wherein one relies on the analogy which exists between this case and
the similar problem with which one is confronted when dealing with a
solid wall for the boundary (thus the solid-wall exsmple represents the
limiting case of cascade-type boundary, for which the chordlength of
each portion of the wall becomes equal to the “pitch”, that is to say,
in the ltiiting case, one has L/D=l, and q ).=m

In this analogous solid-boundary case, it Is well known that the
requisite distribution of vortices lying along the x-axis that gives
the proper solution to the problem inside_the tunnel (y < O) is equi-
valent h all respects to a singularity A (conjugate of A) placed
at the point +iYo (which is the image point of -iYo with respect

to the straight wall), while the requisite distribution for those points
lying outside (y> O) is equivalent to a singularity -A placed at the

. point -iYo (which thus cancels the effect of the original singularity

located there).

.
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Now this equivalence, which is evinced in this speciel case where
one is dealing with a solid boundary, suggests the possibility immedi-
ately of extracting therefrom a generalization which will be applicable
even in the case where one is concerned with the gapped-wall type of
boundary. In fact the natural thing to do is to take the expression
for the complex velocity corresponding to a field point lying “inside”
in the form —

.

.

dWm”—= VW+A 1
dz 2flz + HO

+All
o

(3.1)

wherein A’ stands for a suitable singularity located at the petit +iYo

(the image-poiht of -iYo). The value of this latter singularity maybe
determinedly invoking the condition that equations (2.8) and (3.1) should
be identical; that is to say, it must be true that

dWm” dWm‘
—= —=
dz dz

But it can be seen
of Vy(~) is linked to

relation:
#-

J’
m

vm+~ 1 -~ Vy(g) -+$ (3.2)
231z + iYo Yci -~ z

. .

by reference to equation (3.1) that the value
the singularities from equation (2.9) by the

.

Vy(o =* R=E-M.=J
1

[

I + 1’ A A’=— 1-— -—
4YTi ~ - iYo

(3.3)
~ + iYo ~+iYo k-iYo

‘Thisvalue of Vy(~) is now to be inserted into the integral expres-

sion s.risingin equation (3.2). The indicated integration is actually
carried out merely by integrating along the whole x-axis, entirely within
the domain of reals. In order to make use of the powerful methods of the
complex variable, it should be observed, however, that the integrand is
always going to be an infinitesimal of the second order along the whole
circle at infinity in the complex plane. Then, if it is formally agreed
to perform the integration in more generality around a closed contour in
the complex plane, consisting of the x-axis and the semicircle at infinity
for values of y > 0, and if the direction of the path of the integration
is taken to be that of the positive sense for the variable of integra-
tion, ~ (which is now considered tobe complex], it follows that the
sought value of the real integral is equivalent to an integration in the

.

.

.—

-.
.-

..
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complex plane, which can be carried out by having recourse to the theo-
rem of residues, to give

J

m

$[

K + 1’VY(E) ~=~ — A A’

1

-—3
-m z -5 4~ E - iYo [+iYo-E+iYo ~-iYoz-~

1 K 1 A’=.— --—
2Z -iYo 2 z-i%

(3.4)

Thus, the complex velocity of the flow now under examination may be
written down at once, by referring to equation (3.2), as

dWm‘
—= vm+~
dz 2Yt

Hence, because of
velocities for the two

1 +~ 1-iyo@-x’)== (3.5)
z + iYo &i z dz

the equality which must exist between the complex
flows, one is led to the conclusion that

(3.6)

It is obvious,.therefore, that the reflected singularity A’, when
having

. on the
walJ.
closed
result

where

the value jyst determined, will satisfy the requirements imposed
behavior of the flow in consequence of the presence of the gapped
Hence, the problem which was set has been formally solved in
form. For the sake of convenience, in what follows, the above
will be written more compactly as

A’ = rl (3.7)

r is defined as the reflection factor of the wall. Thus it is
seen that

r=>=- 1~
-zq2+l

(3.8)
q-i qp+l

This result may be interpreted by means of the statement: The
%eflected” singularity for a gapped wall is equivalent to the reflec-
tion factor (complex) multipliedby the complex conjugate of the origi-
nal singularity.

. If one now goes on to investigate in like manner what happens when
the field point lies outside of the wall, where y> O, it is necessary
to carry out the integration indicated in equation (3.4), in the complex

.
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.?

plane, by going around the closed curve composed of the entire x-axis
and the semi-circle at infinity lying in the region where y < ~. The
sense of this integration is opposite to tkat of E in this instance,

.

and the z belongs now to that half of the plane where y > 0. Thus
the value of the integral becomes now

_

J
m

$[
-tx A A A’

1
VY(E) +=.* — —-—-—

de

z E - i~o ‘g+iYo k+iYo E-iyo z-t-m

.1 A 1 z’ 1A

(
1 q—— .- =.—

)
-— (3*9)

2z+i% 2z+i% 2z+i% qi-1

The complex velocity
obtained by inserting the
the result that

pertaining to the downstream flow is thus
above expression into equation (2.8), with

dWv‘ Al=va-t~.——J——— ——
(

~1-— q
-Z- 2YTz+iYo 2Yrz+iYoi q+i )

Al
=v.+——

23tz + iYo $-*)=vm+* -(i-F)

(3.lo)

That is to say, viewed from a point outside the gamed waU, the
field of flow can be looked upon as though it_were generated by a single
singularity A(l - F) located at the point -iyo. ln ~alo~ tO the
practice common in optics, t~s will be called a “transmitted” singu-
larity. The magnitude of this singularity may be interpreted as being
the product of the magnitude of the original singularity and the trans-
mission factor T = 1 - F. It then maybe noted that

T =1 ~ 1 +1 q
-F=l-—— ‘— (3.11)

q.+i=q2+l” iqa+l

It is worth especial notice to point out the extraordinarily remark-
able fact that each reflection leads once again to use of the complex
conjugate of the original singularity, but ~othlng of a
arises when one works with the transmitted singularity.

Ming use of this observation, one may now.easily
connections in the singularities which one obtains when
singularity lies either above or below the gapped wall.
let a sketch be prepared that shows the location of the

similar nature

see the inter-
the original
To do this,
singularities

.

.

.

k’
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and the trace of the gapped wall, lying parallel with the x-axis. (See
fig. 2.) Now imagine that this scheme of singularity-placement is
reflected in a line lying parallel with the x-axis. This reflection
is made in such a way that each qmtity will have a complex conjugate,
as indicated.

For simplicity’s sake the singularities in the flow which have thus
far been under examination are written with a bar over them. This is
done in order to obtain a result which willbe directly valid for the
reflected image of the field of flow just about to be studied, wherein,
for sake of preciseness, it will be assumed that the original singular-
ity is located at a point lying above the gapped waU. If the original
singularity lies beneath the gapped wall, it can be seen, by reference
to the relationships already sketched in figure 2, that the only thing
which needs to be modified is that the reflection and transmissionfac-
tors should be taken to be the complex conjugates of the corresponding
reflection and transmission factors applying in the case where the
gapped wall is located below the original singularity.

4. Everything that has so far been derived may be summsrized quite
succintly merely by the statement: The presence of a gapped wall in
the field of flow coming from the singularity A is equival~nt to:
if the field point lies inside, a “reflected” singularity rA located
at the image point, while if the field point lies outside, then a flow
is generated which is equivalent to the presence of a “transmitted”
singularity 7A located at the place where the original singularity
was situated.

The factors of reflection and of transmission can thus be written
as (provided one makes use of a double-level sign, of which the upper
is to be selected if the singulsxity lies above the gapped wall, and
the lower of which applies if the singularity lies below the gapped
wall):

r ~ ~2 *1 q=— =— -— (4.1)
qti qp+l il+(f

~ 1 +1 q ●

T 1=-— =— _-—
q~i qp+l il+cf

(4.2)

.

.

These factors are linked to each other by the relations

T= 1 -F (4*3)

(4.4)
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--

Of course, as was said earlier in Article 1, the value of q is obtained
from

(4.5)

where L stands for the solid chord length of each oyen-md-closed piece
of the gapped wall, and where D represents...the“pitch”) or interval .
between sequential pieces of the breached wall..

Since all possible singularities, either of a concentrated or dis-
tributed type, can be considered as acting like sources and vortices,
the results just obtained can be made applicable to all aerodynamic
singularities.

As a sort of check, it can be noted, through recourse to eqpa-
tion (4.1), that when L/D approaches unity (the solid-wall case) then
q becomes infinite and r becomes unity too; that is to_say, when
L/D = 1, the “reflected” singularity is simply equal to A, regardless
of what the relative location of the singularity is with respect to the

—

wall. On the other hand, the “transmitted” singularity-in this case
is 7A, where T = 0, and thus this result Jibes with the situation
with which one already is familiar.

.

If the L/D ratio tends toward zero, however, which means that
the wall effective~ disappears (but it does not become a fluid sur-
face, because it is being assumed that the flow is isoenergetic), then

.

q becomes zero, and consequently r = O and T = 1. In this case,
therefore, there is no reflection taking place and the “transmitted”
singularity is 7A = A, and it thus coincides with the original one.
This is quite obviously the c’orrectresult, because if nothing is pres-
ent to disturb the flow, it remains the same as it started. Hence, the
above derived theory appears to be fully justified, and accords with
known results in the two limiting cases thus tested.

5. It was e~~citly made clear in the above treatment that only the
behavior of those interactions was being examined which apply strictly
to the case of a gapped wall placed in isoenergetic flow. In actuality,
however, a perforated wind tunnel would require the study of nonisoener-
getic fields. This is so because the real perforated tunnel can be
thought of as being a superposition of a.free fluid surface (that is,
this boundary is Just the line of demarcation between the tunnel jet
and the external atmosphere) upon the gapped-wall type of flow. When
two such boundaries are allowed to coalesce, they constitute together
what will now be calle”da perforated-wall tunnel> or simply a perforated
wind-tunnel.

●

— . .. .

.
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It is well known that the effect of a free fluid surface (two-
dimensional) operating in conjunction with a singularity A is equiva-
lent to the presence of a singularity -~ placed at the image
of A; that is, the reflection factor for a free fluid surface

r’ = -1

and consequently

T’ =1-F’=2

point
is

(5.1)

(5.2)

In order to study most conveniently the case of such mixed bound-
aries, it is best at first merely to handle each wall separately and
then let them coalesce. By aid of this process of bringing the two
walls into juxtaposition, one may thus deduce what the appropriate
reflection factor should be for such “mixed” walls.

To proceed with this analysis of the double walled tunnel, it is
convenient to denote the gapped wall as Ps and the free fluid surface
as Pf. Also let A A Q + I’/i represent a singularity located inside
the wall. (See fig. 3.)

It should be recalled that the selfsane wall will have reflection
and transmission factors of r and T, respectively, or of F and T
depending upon whether the radius vector, which originates at the singu-
larity which is giving the reaction at the wall, approaches the wall in
question from above or from below.

If one imagines that the radius vector emsmating from the singu-
larity A has the same attributes as would appertain to a ray of light
issuing from this source, it is quite easy to find the locations of the
multiple reflections Rs, Rfl~ Rf2, . . . which are produced by action

of the two walls under study, and at the same time it will be equally
easy to establish where the points of incidence sre located depending
upon whether the ray approaches them from

By use of a system of notation which
be stated that the first reflection point

--
Rs = rsA

In order to arrive at the point fl,

below or above. - –

is perfectly obvious, it may
is thus given by the relation

(5.3)

the ray u must undergo a

process consisting of a transmission at Ps characterized by the fac-
tor ~; a reflection at Pf characterized by a reflection factor ~;

and in turn another transmission at Ps characterized by the factor Ts●

As a result, the ray in question now appears to issue from the reflection
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point ~1, and the strength of this reflected singularity is thus given

as
—

.
—. 1.

Rfl= (A~s)rfT~ =~T82 (5.4)

In order to arrive at the point f2, the ray must_undergo a process

consisting of three reflections and two transmissions. As a result the
ray will then appear to issue from the reflection point Rf2, and the

~trength of this singularity will be found, according to a process whit-h
is entirely analogous to what was done in the previous case, to be

Rffl{~Fs)Ff]r}T#f .GT#r#e;f#s (~~) ._

The simple repetition of this process of tracing out the paths of
the light ray thus leads one to write in general:

‘f’(n+l)
It is now time

are allowed to come
so happens that now

= ~nr~8 =Rfl(rfFs)
n

= Z?f-rs2(rfFs)n (5.6)
.

to see what ha~ens when the two was Pf and Ps 4
closer and closer until they finally coincide. It
all the “reflected” singularities once again come

together and coalesce in the image point of A, while their magnitudes .

are all gathered into one single “reflected” singularity A*, the mag-
nitude of which is

—.

(5.7)

—

where ~m stands for the reflection factor of the perforated (or mixed)

wall. By carrying out the indicated sum of the geometric series it

~follows that (provided it is taken for granted that .6 = 1 - Fs :

(1 2- 7?s)
Fm =Fs+Ff

1 - rfi?s
(5.8)

%?he bar placed over the symbols in parentheses is used to indicate_ *
that one should take the co?qplexconjugate of the indicated quantity.

.

—

.-<.



NACA TM 1429 13

%
In the case in which interest is now focussed, the wall Pf is to

be taken as a free fluid surface, and thus the reflection factor which
.

pertains to a perforated tunnel is obtained bymsking use of equation (5.8)
(which is true in general) by particularizing it to the case wherein rf

is set equl to

Thus now

Fm =

Ff, and where Ff = -1, and where, besides, Fg = *.

(1- F9)2=37S -1= a.2- +-l
Fs ___ -- . -1 (5.9)

l+rg ‘s+L 2q2 -;q+l

It is also clear that if the perforated tunnel wall happens to be
below the singularity, the reflection factor is the conjugate of the
one just now deduced.

One may check the above-derived result by letting the L/D ratio
vary from one limit value to the other and noting what transpires. For
instance, let Lb = 1 first, and then q = m (a solid wall and a free
surface coma into coincidence) and thus the reflection factor in this
case is ‘m = 1. On the other hand, if L/D is allowed to be zero,
then q = O (the solid wall disappears but a single free fluid surface
remains), and in this case the reflection factor is rm = -1. These.
results are just what one would expect.

. It is worthwhile pointbg out that Irml = 1, and therefore one

may write

rm=e id (5.10)

where

~ = argument (rp) = G(L/D) (5.11)

The value of this functional relationship $ = G(L/D) has been
computed for a number of values of L/D, and the results are reported
in the appended table for the case where the tunnel wall lies under-
neath the singularity A.

.

.

o
.05
.1
.2
●3
.4

-3.14
-3.125
-2.54
-1.995
-1.55
-1.21

0.5
.6
.7
.8
.9

1.0

-0.93
-.722
-.~o
-.324
-.158

.00
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CHAPTERII

1. In the next step towards understanding the action of a perforated
wind-tunnel, it is necessary to take into consideration the effect of
both of the perforated walls P and Q, one of which lies above and the
other lies below the singularity A. The distance between these walls
is assumed to be the height h, and they are symmetrically placed with
respect to the singularity, which is itse2f considered to lie at the
origin of the complex coordinate system to which the flow is referred.

.

. ..-—

.

-.

It is clear that the usual multiple reflections also take place
here, and in consequence it will be true that the velocity at each point
in the region of the flow ccmprised between the two walls will be composed
of the sum of the undisturbed velocity V@ (the velocity vectors produced

by direct action of the shgularity A, together with the velocities
arising from interference from all the reflected singularities).

Now let rp and rq be the reflection factors for the lower wall

and upper wall, respectively. Tha3 if one examines the ray ~ emanating

from A and progressing downward fbom A (this path is denoted in fig. 4
by means of a solid line) it will be seen to be reflected at the wall P,
and because of this it will appea to have issued frcmthe singularity
P1 located at a vertical distance downward of -ih. The strength of
this singularity is given by the relation

‘1 =Erp (1.1)

Continuing on with the tracing out of the path followed by tine
ray up, it will be recognized that ib is again reflected from wal.1 Q,
and it will thus appear to have come from the singularity PI*, located

at a vertical height of 2ih, and having a s&ngth given by

pl !

(-)
=Flrq = &p r,q=

It is intuitively obvious that the path

periodically repeated in such a way that any
singularities Pnl and P~l will.have the

‘Prq
(1.2)

of the ray up will be

two successive “reflected”
same relation between each

other as the singularities PI1 and A have. Thus it will be true in

general that
P:+l = P ‘Tr

npq

.

.

—

(1.3) -

.

.—
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and consequently it will be true that

Pnt
()

= A ~prq n

while at the same time the ordinate location
will be given as

Returning now once
of the path of the ray

iYpn’ = i2nh

again to take up the

(1.4)

Of the S~ity Pn’

(1.5)

question of the continuation
~ after it has undergone the last reflection

considered previously, it will be seen that it is once again reflected
at the wall P. h consequence of this reflection the ray now will
appear to be emanating from the singularity P2 which lies at a distance
-i3h below the wall, and the strength of which is gfven by

It will again

Vr =hp=qrp = PIFqrp
‘2=lp

(1.6)

be abundantly cle=, therefore, that any two successive
“reflected” si@ulsrities Pn+l and Pn

the seineway that the singularities P2

connected above. Thus, in this case, it

will be interrelated in exactly

and PI were found to be

is obvious that

‘n-i-l -= ‘nrqrp

and consequently it will be true that

Pn =
()

P1 ~qrp
()

‘-1 = Gp ;qrp ‘-1

and the ordinate distance of p= is given as

~ypn = -i(~ - l)h

(1.7)

(1.8)

(1.9)

I&means of this pocedure half of the reflections of the singularity
at A have now been determtied. In order to find the other half one may
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proceed to follow an entirely analogous development which stems from the
tracing out of the path followed by a ray Uq. The route takem by this .

ray will be entirely symmetric to the one traversed by ~ (this new

path is also drawn in on fig. 4) except that now the order in which the
walls are encountered by the ray ~ will be inverted from what was

true for the ~ ray. It is quite evidently sufficient, therefore,

merely to interchange the s~bols rp and rq in the above-written

formulas in order to arrive at the correct exq?ressionsfor the magnitudes
of the “reflected” singularities ~ and ~~, which lie at locations

which are synmetricall.yplaced with respect to the ana~ogous singular--
ities Pn and Pn~. The sought values appertaining to this half of the

“reflected” singularities are thus obtained as: --- —

)~ =Krq(~prq
n-1 (1.10)

iyQn = i(2n - l)h (1.11)

()%’ = A ~qrpn
f-yQnl =-i2nh

2. It is now convenient to introduce the

(1.12)

(2.13) -

factor f(z-zo), which is the
●

amount by which the magnitude”of an arbitrary singularity located at the
point Z. must be multiplied in order to determine the magnitude of the
complex velocity produc+ at the point z. ~making use of this eonv~-
tion and by having recourse to the expressions just dmived in the pre-
vious paragraph, one may write down the value of the complex velocity as
a sum of all those complex velocities which are produced by action of the
multiple reflections in the two perforated walls. This total value for
the ccunplexvelocity is thus

(-03
—

,.
-.
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Since in actual practice it
tunnel configuration will.be one

will be true that the
for which both of the

17

most c-only met
perforated walls

have the same reflection properties, and stice there will be a good deal
of’simplification resulting from such sm assqtion, it will be assumed
that this is the iqpe of tunnel with which the following discussion will
be concerned. 12nthis case, it is true that

=r
‘P ~

and consequently, equation (2.1) will become simplified to just

[1wdw I rp
2U-1

z=
f[z + i(a - l)q +

pa

I }
- ~-lf[z - l(2n - l)IJ +(rP)

n=l

(2.2)

[

m co

A. zrp2nf(z + i2nh) +
I

1

(Fp)mf(z - i2nh) (2.3)

n=l n=l

One can bring about another great shplif ication in the work if
the complex velocity is only sought for points lying along the axis of
reals (the X-SMS) . If this limitation is agreed Won, then it will
be seen that the arguments of f sre complex conjug.atesin pairs, and
likewise the sums of such pairs thus also wiU be complex conjugates.
Consequently, the sum total of the arguments is just twice the value
of the real part of each of the individual ones, and it follows that

(:)x=@>l”pa-’f’” ‘(a - ‘)h] + =&paf(x+ ‘=)
=

m

I I al-l
= 2R(A)IJ .rp

[

f[x + i(2n - 1)~ + rp 1‘f(x+ i2nh) +

n=l

w

I [ al
i2~(A)FJ .rp f(x+ i2nh) - ~

1 }
~-lf[x + i(2n - l)liJ (2.4)

n=l
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d

It may be noted that each term of the indicated sums is the sum
of two terms which involve the quantities 2n - 1 and 2n. It is con-
venient to reletter these multipliers as m and m +-1, respectively.

m

Hence one nay now rewrite the expression for the complex velocity more
concisely as

m co

()dw =2R(A)IJ
I

rpmf(x + lmh) + 2i~(A)~
10

~ ‘f(x
Zx

-r

m-l m=l

Regardless of what the eqression for the function f

. .._

+imh) (2.’3)

happens to
be, it is worthwhile pointing out that it is always possible to develop
equation (2.5) in a MacLaurin series provided one only moves away from
the origin a short distance, that is to say, provided the value of x
is smll in comparison with the width of the tunnel, h. Upon carrying
out such a development one obtains the complex velocity as

m a

()dw ~(A)E
I

rpmf(imh) + 2i&(A)B
xx= 10

-rp ‘f(imh) +

m=l m=l

{
IL 1‘Af(x+m) +x X?(A)IJ rp

X4

21~(A)IJ
;:)L

-rP
m d f(x+hhjx+

}
+0. .

m.1

In order to carry on the analysis any further it is necessary to
select a specific functional relationship for f(x + imh) for each
particular case, depending upon what type of singularity is under study.

3. In the case where the singularity is made up of a
Q, and a vortex having a circulation, r, that is, for

A = Q + ~, the appropriate form for f is

f(x+ imh) =
1

23T(X+ imh)

..

.

.

source of strength,
the case where

.

(3.1)

and consequently

.
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I&l m=l

provided the series development is carried out ordy as fsr as the first
term in x.

4. In the case where the singularity is a doublet, of moment M, with
its axis orientated so as to be parallel with the x-axis, the appro-
priate form for f is

f(x+ imlh)= :+ 1 (4.1)
2X(X+ i&

and consequently

()dw x

“ rpm W rpm
-A~ — tiR—= +2X

z z+”””
(4.2)

dz x fih2
M2 h ~h2 -

w-l m=l

provided the series development is once again merely carried out as far
as the linear term in x.

5. In the preceding two Articles, one is confronted with the necessity
of sumning certain series

where t =1, 2, 3, “ “ “

which sxe expressed as follows:

.

cos mO + i sin mfl (5.1)
(id

The latter form for the series results from acknowledgment of the
fact that

2~-3i-1
‘P = =C!osd+isind (5.2)

2q - i+l

inasmuch as Irp] =1. While it is also true that the restriction

()
+~fl.s,rg rp so (5.3)

holds.
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4

The case d = O corresponds to that of a solid walJ boundary, while
the case $ = -yr corresponds to the situation where the boundary is a
free fluid surface.

.

Now, depending on whether one employs the + sign or the - sign in
equation (5.1), different trigonometric series are obtained, and like-
wise when different values of t are Inserted into the formulas differ-
ent trigonometric expressions are generated; but these sre all easily
summable, and the several cases of interest are presented below:

Case where t =1 and the sign is +:

lt 4=-_ -_ (5.4)
22

for # lying within the open interval running from O to -2fi,while

w
.-

~

1

~.(j for @ =0 or il=-2Yi

m=l
.“

Case where t = 2 and the sign is +:

+$’ z-=-+$
m=l

for d lying anywhere
the end-points.

(5.5) -

m.1

on the closed interval from O to -Z%r,including

Case where t =3 and the sign is +: ..

m=l m=l .-

for ~ lying anywhere in the whole closed interval from O to -2fi.

Case where t = 1 and the sign is -:

(5.6)

.—

(5.7) -

,
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for ~ lying within the open interval running from -YC to +x while
.

~ ‘~m=o for ,=,fi

I i“
m=l

Case where t = 2 and the sign is -:

(5.8)

m=l “=1

for $ lying anywhere on the closed interval from ~ to +YC,including
the end-points.

These eqressions sre all that is required in order to be able to
describe the behavior of the velocities along the axis of symmetry of
the wind tunnel ti the neighborhood of the singularity. By substitution
of the above-evaluated series in the expression given as equation (3.2),
it is seen that the sought formula for the con@ex velocity along the
axis of symmetry turns out to be, in the case of a singularity of the

. form A = Q+$:

. ()dw -JUc +@-- r a+
~x= ah 2ifih

while if the properly evaluated trigonometric series are substituted
into the expression given as equation (4.1) it is seen that the sought
formula for the complex velocity along the axis of symmetry turns out
to be, in the case of a doublet with moment M:

.

.
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.

CHAFTER III

.

1. After having gathered together all the necessary basic tools as
derived above, it is possible now to go ahead with a study as to just
how one might eliminate the interference effect at certain important
locations in a perforated wind tunnel.

In this study two important limiting cases will.be examined; viz.,
in one case the infinitesimally thin lifting wing will be treated (the
antisymmetric problem), while in the other case the symmetric wing of
finite thickness but at a zero angle of attack,will be studied (the
symmetric problem). ..- :.. . —

As is’well lmown, the lifting wing (antisymmetric case) is handled
by imagining that a vortex is concentrated at the quarter chord point
of the airfoil with chordlength 1, and the boundary condition that must
be satisfied is that the streamlines become tangent to the mean csaiber
line of the profile at the three-qparter chord point.

Now, in general, because of the interference eff=ct of the surrounding
wind tunnel, it till be true that the local angle or attack at the three-
qwter chord point will no longer &qthe same as that angle given by the

difference in direction between the Vm direction and the chord line of .

the profile, but instead this local angle of attack is increased by the
amount .

G .? (1.1)
m

where Vy is the component, taken in the direction of the y-=is, of the

velocity induced at this point by interference action of the tunnel walls.

Consequently the boundsry condition which now has to be satisfied
is .

r= fiz(~+ E)vm (1.il -

where r is.the circulation existing around the profile in question, and,
of course, a is the angle of attack of the chordline of the airfoil with
respect to the free-stream direction, and z represents the chordlength.

this
thus

If one wishes to eliminate the wall interference It is obvious that
means that one rmst counteract or cancel out the increment e, and
the Vy component must be annulled at the three-qparter chord point. -

—

.

-..



NACA TM 1429 23

Let it now be assumed that the profile is located in the tunnel in
such a way that the point where the vortex r is considered to be concen-
trated lies on the axis of the tunnel (the x-axis) and that this point
is also the origin of coordinates. Thus the three-qyarter
then lies at a distance x = 2/2 downstream

?y reference to eq.zation(5.9) of Chapter II, it will
under these stipulations one may write

and thus the vertical component of induced velocity may be
making

,=,~,l’q

Since O = arg(rp), it is less than zero snd thus one
the negative sign in the above formula.

On the other hand,
fixed cymxrbity,then it
that

if one would rather consider that

chord point

be seen that

(1.3)

eliminated by

(1.4)

must select

ti is the
will be necessary to choose the Z/h ratio so

z/h = ‘a (1.5)
37s2-fi2

2. Now the symmetric problem Is to be treated.

It is well.known in this case that the symmetric profile can be
sinmlated by employing a distribution of sources and sinks whose total
strength is actually zero, and this distribution is equivalent (as far
as its effects on the field of flow, at points fex away from the loca-
tion of these singularities, are concerned) to the effect of placing a
doublet, whose moment is going to be proportional to the cross-sectional
area of the profile, i.e., M = -VJ3, at the centroid of this area.

Let it be assumed, therefore, that the centroid of the profile is
placed so as to coincide with the origin of the coordinate system for
the tunnel flow, and let x be the abscissa value for the point at
which one wants to cancel out any interference effect that would arise
from action of the constraining wind tunnel walls. The magnitude of
this induced velocity will thus be expressible as
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—
. . —

-.—.

and in order to cancel it, one must obviously impose the condition, there-
fore, that (since d is +0 take on only

X2

T
+.3+$ -F(++

This relationship may be rearranged

negative values):

0 (2.2))Y-&’+ d3 .
2 %-

into a more convenient form to
it will be seen thatwork with, and upon carrying out this simplification

21=+Z (0 +0.422Yr)(O+l.57&)
h2 d(d i-Yc)($+ 27C)

(2.3) ._

to the closed interval runningIf the value of $ is confined
between zero and -m, then the ratio
value of +rn to a value of -m snd
d = -0.42ti.

x/h varies continuously from a
passes through the point zero when

The behavior of this relationship for .x/h is of particular inter-
est in the neighborhood of the value where d = -0.422YC (or where
x/h = o, that is). In the region of the 0 close to O = -0.422YC the
e~ress~on for x/h may be d~veloped in a series to give simply, to

.

first order, that

+..*
ii

= -0.462(19+1.325)

$<0

(2.4)where
—

(.!onversely,it is
as a function of x/h
written as

easily seen what the expression for $ willbe
in this case, and this relationship may thus be

-.

0 =-~(2.016) - 1.325 _. (2.5

an airfoil has centraJ.symmetry “(bothmidchordIiIthe case where
as well as fore-and-aft symmetry) it is obvious that the interference
tiom the wall will turn out to be zero at the location of the center of
symmetv, provided the value of the porosity is such that O . -1.325. .

‘Ikanslatedby R. H. Cramer
Cornell Aeronautical Laboratory, Inc.,

—

Buffalo, New York

. —
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